eTheRNA and VUB expand strategic collaboration to engineer next generation mRNA therapeutics with TetraMix®

- Extension to proven TriMix® adjuvant technology intended to boost dendritic cell activation

Niel (Belgium)

eTheRNA immunotherapies NV (‘eTheRNA’), a clinical-stage company developing mRNA-based immunotherapies as off-the-shelf products for the treatment of cancer and infectious diseases, announces the expansion of its strategic collaboration with Vrije Universiteit Brussel (VUB) with the signing of an exclusive license for TetraMix®, a new generation of the TriMix® adjuvant technology.

Clinical and preclinical data have demonstrated clinical safety of TriMix, together with its ability to amplify immune responses in multiple disease indications. This new license stems from the collaboration between the VUB and eTheRNA focussed on directed activation of dendritic cells and leverages research performed at the Laboratory for Molecular and Cellular Therapy (LMCT) of the VUB. In the presence of specific antigens, dendritic cells behave as immune response modulators, directing the immune system to attack target cells through the activation of directed CD4+ T-helper and CD8+ cytotoxic T-cell responses.

“We have already demonstrated that TriMix has a benign safety profile and promotes high mRNA expression levels,” comments Steven Powell, CEO, eTheRNA. “TetraMix will now be integrated into our programs to engineer new generation mRNA immunotherapies offering even greater efficacy and immunogenicity.”

“VUB has been an internationally recognised centre of excellence for RNA research for the last decade with numerous breakthroughs originating from LMCT,” comments Professor Dr. Karine Breckpot, Director of LMCT. “TriMix’s robustness and versatility as an immune stimulatory platform has been proven in a number of clinical indications and we are delighted to now introduce TetraMix. We are confident that TetraMix’s new way of immune activation will certainly set a precedent for future immunotherapies.”

Please visit our Strategic Collaborations webpage to find out more about eTheRNA’s multiple partnerships: https://www.etherna.be/strategic-collaborations/.

About eTheRNA immunotherapies

eTheRNA immunotherapies NV is developing immunotherapy and vaccine products for the treatment of cancer and infectious disease from its multiple RNA, formulation, and manufacturing technology platforms. The company is headquartered in Belgium and was established in 2013. Its founding shareholders include Progress Pharma and VUB. eTheRNA is supported by an international group of specialist investors; BNP Fortis Private Equity, Boehringer Ingelheim Venture Funds, Everjoy Fortune PTE. LTD, Grand Decade Development Limited, Fund+, LSP, Novalis Lifesciences, Omega Funds, PMV and Ying Zhou Enterprise Management Company Limited who share the Company’s ambition to build a world-leading company in the RNA field. To date, the Company has raised €63 million of venture funding. Further details relating to eTheRNA’s R&D pipeline can be found at https://www.etherna.be/immunotherapies-rd-pipeline/.

About VUB Vice-Rectorate Innovation & Industry Relations

The mission of the Vice-Rectorate Innovation & Industry Relations is to create a positive impact on society through the valorisation of scientific research. Its operational and multidisciplinary team, VUB TechTransfer, aims to connect the university’s research expertise with society and industry, together with its partners VUB Foundation and Crosstalks.

About VUB
Vrije Universiteit Brussel is an internationally oriented university in Brussels, the heart of Europe. By providing excellent research and education on a human scale, VUB wants to make an active and committed contribution to a better society.

www.vub.be

About the Laboratory for Molecular and Cellular Therapy
The goal of the research activities at the Laboratory for Molecular and Cellular Therapy (LMCT) is to develop innovative immunotherapy strategies, among which immunotherapy strategies that exploit the immune orchestrating activity of dendritic cells, exemplified by the development of the TriMix and more recently TetraMix technology. Other strategies under development include adoptive T-cell therapy and therapies that support the activity of T-cells, be it stimulated by dendritic cells or adoptively transferred, in the tumor microenvironment. Technologies such as mRNA, lentiviral vectors, and single domain antibodies (better known as nanobodies) are employed for these purposes.